Publications
Publications (2010-present)
State-dependent binding of cholesterol and an anionic lipid to the muscle-type Torpedo nicotinic acetylcholine receptor
Ananchenko, A., Gao, R.Y., Dehez, F., Baenziger, J.E.
Communications Biology, 2024, 7, 437
A release of local subunit conformational heterogeneity underlies gating in a muscle nicotinic acetylcholine receptor
Thompson, M.J., Mansoub Bekarkhanechi, F., Ananchenko, A., Nury, H., Baenziger, J.E
Nature Communications, 2024, 15(1), 1803 DOI: 10.1038/s41467-024-46028-x
Origin of acetylcholine antagonism in ELIC, a bacterial pentameric ligand-gated ion channel
Slobodyanyuk, M., Banda-Vázquez, J.́A., Thompson, M.J., …Chica, R.A., daCosta, C.J.B.
Communications Biology, 2022, 5(1), 1264
The molecular mechanism of snake short-chain α-neurotoxin binding to muscle-type nicotinic acetylcholine receptors
Nys, M., Zarkadas, E., Brams, M., …Nury, H., Ulens, C.
Nature Communications, 2022, 13(1), 4543
Distinct functional roles for the M4 α-helix from each homologous subunit in the heteropentameric ligand-gated ion channel nAChR
Thompson, M.J., Domville, J.A., Edrington, C.H., …Giguère, P.M., Baenziger, J.E.
Journal of Biological Chemistry, 2022, 298(7), 102104
Recent insight into lipid binding and lipid modulation of pentameric ligand-gated ion channels
Ananchenko, A., Hussein, T.O.K., Mody, D., Thompson, M.J., Baenziger, J.E.
Biomolecules, 2022, 12(6), 814
Conformational transitions and ligand-binding to a muscle-type nicotinic acetylcholine receptor
Zarkadas, E., Pebay-Peyroula, E., Thompson, M.J., …Baenziger, J.E., Nury, H.
Neuron, 2022, 110(8), pp. 1358–1370.e5
Ion channels as lipid sensors: from structures to mechanisms
Thompson, M.J., Baenziger, J.E.
Nature Chemical Biology, 2020, 16(12), pp. 1331–1342
Structural basis for the modulation of pentameric ligand-gated ion channel function by lipids
Thompson, M.J., Baenziger, J.E.
Biochimica et Biophysica Acta – Biomembranes, 2020, 1862(9), 183304
The functional role of the αM4 transmembrane helix in the muscle nicotinic acetylcholine receptor probed through mutagenesis and coevolutionary analyses
Thompson, M.J., Domville, J.A., Baenziger, J.E.
Journal of Biological Chemistry, 2020, 295(32), pp. 11056–11067
A lipid site shapes the agonist response of a pentameric ligand-gated ion channel
Hénault, C.M., Govaerts, C., Spurny, R., …Baenziger, J.E., Ulens, C.
Nature Chemical Biology, 2019, 15(12), pp. 1156–1164
An allosteric link connecting the lipid-protein interface to the gating of the nicotinic acetylcholine receptor
Domville, J.A., Baenziger, J.E.
Scientific Reports, 2018, 8(1), 3898
Pentameric ligand-gated ion channels exhibit distinct transmembrane domain archetypes for folding/expression and function
Therien, J.P.D., Baenziger, J.E.
Scientific Reports, 2017, 7(1), 450
Functional characterization of two prokaryotic pentameric ligand-gated ion channel chimeras – role of the GLIC transmembrane domain in proton sensing
Hénault, C.M., Baenziger, J.E.
Biochimica et Biophysica Acta – Biomembranes, 2017, 1859(2), pp. 218–227
Probing the structure of the uncoupled nicotinic acetylcholine receptor
Sun, J., Comeau, J.F., Baenziger, J.E.
Biochimica et Biophysica Acta – Biomembranes, 2017, 1859(2), pp. 146–154
The M4 α-helix contributes differently to both the maturation and function of two prokaryotic pentameric ligand-gated ion channels
C.M. Hénault, P.F. Juranka, J.E. Baenziger
Journal of Biological Chemistry (2015) 290(41), 25118-25128
Nicotinic acetylcholine receptor-lipid interactions: mechanistic insight and biological function
J.E. Baenziger, C.M. Hénault, & J.P.D. Therien
BBA Biomembranes (2015) 1848(9), 1806–1817
Role of the fourth transmembrane α-helix in the allosteric modulation of pentameric ligand-gated ion channels
C.L. Carswell, C.M. Hénault, S. Murlidaran, J.P.D. Therien, P.F. Juranka, J.A. Surujballi, G. Brannigan & J.E. Baenziger
Structure (2015) 23(9), 1655-1664
Aromatic interactions at the M4-M1/M3 interface promote gating and influence the lipid sensitivities of pentameric ligand-gated ion channels
C.L. Carswell, J. Sun & J.E. Baenziger
J. Biol. Chem. (2015) 290, 2496–2507
The role of the M4 lipid-sensor in the folding, trafficking, and allosteric modulation of nicotinic acetylcholine receptors
C.M. Hénault, J. Sun, J.P.D. Therien, C.J.B. daCosta, C.L. Carswell, J.M. Labriola, P.J. Juranka & J.E. Baenziger
Neuropharmacology (2015) 96, 157-168
A novel mechanism for activating uncoupled nicotinic acetylcholine receptors
C.J.B. daCosta, L. Dey, J.P.D. Therien & J.E. Baenziger
Nat. Chem. Biol. (2013) 9, 701-707.
Highlighted in News and Views: Andersen, O.S. Nat. Chem. Biol. (2013) 9, 667-668
Gating of pentameric ligand-gated ion channels: structural insights and ambiguities
C.J.B. daCosta & J.E. Baenziger
Featured review in Structure (2013) 21, 1271-1283.
Structural sensitivity of a prokaryotic pentameric ligand-gated ion channel to its membrane environment
J.M. Labriola, A. Pandhare, M. Jansen, M.P. Blanton, P.-J. Corringer & J.E. Baenziger
Biol. Chem. (2013) 288, 11294-11303.
Molecular mechanisms of acetylcholine receptor-lipid interactions: from model membranes to human Biology
J.E. Baenziger & C.J.B. daCosta
Biophys. Rev. (2013) 5, 1-9.
Structural characterization and agonist binding to human α4β2 nicotinic receptors
C.J.B. daCosta, R.M. Sturgeon, A.K. Hamouda, M.P. Blanton & J.E. Baenziger
Biochem. Biophys. Res. Commun. (2011) 407, 456-460.
3D structure and allosteric modulation of the transmembrane domain of pentameric ligand-gated ion channels
J.E. Baenziger & P.J. Corringer
Neuropharmacology (2011) 60, 116-125.
Phospholipase C activity affinity purifies with the Torpedo nicotinic acetylcholine receptor
J.M. Labriola, C.J.B. daCosta, S. Wang, D. Figeys, J.C. Smith, R.M. Sturgeon, & J.E. Baenziger
Biol. Chem. (2010) 285, 10337-10343.
Cations mediate interactions between the acetylcholine receptor and anionic lipids
R.M. Sturgeon & J.E. Baenziger
Biophys. J. (2010) 98, 989-998.
Preparation of reconstituted acetylcholine receptor membranes suitable for AFM imaging of lipid-protein interactions
Vuong, J.E. Baenziger & L.J. Johnston
Chem. Phys. Lipids (2010) 163, 117-126.